Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux

Dimension: px
Commencer à balayer dès la page:

Download "Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014"

Transcription

1 Tests du χ 2 Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux A. Lourme

2 Outline Comparaison de plusieurs échantillons Indépendance de deux variables qualitatives

3 Un exemple Le dé est-il truqué? On lance cent fois le même dé : face effectif observé

4 Un exemple Le dé est-il truqué? On lance cent fois le même dé : face effectif observé Supposons que le dé n est pas truqué : face effectif observé fréquence observée 0, 07 0, 18 0, 26 0, 15 0, 18 0, 16 fréquence théorique 1/6 1/6 1/6 1/6 1/6 1/6 L écart entre fréquences théoriques et fréquences observées est dû seulement à l échantillonnage.

5 Un exemple Le dé est-il truqué? On lance cent fois le même dé : face effectif observé Supposons que le dé n est pas truqué : face effectif observé fréquence observée 0, 07 0, 18 0, 26 0, 15 0, 18 0, 16 fréquence théorique 1/6 1/6 1/6 1/6 1/6 1/6 L écart entre fréquences théoriques et fréquences observées est dû seulement à l échantillonnage. Comment mesurer l écart entre fréquences observées et théoriques?

6 Un exemple Le dé est-il truqué? On lance cent fois le même dé : face effectif observé Supposons que le dé n est pas truqué : face effectif observé fréquence observée 0, 07 0, 18 0, 26 0, 15 0, 18 0, 16 fréquence théorique 1/6 1/6 1/6 1/6 1/6 1/6 L écart entre fréquences théoriques et fréquences observées est dû seulement à l échantillonnage. Comment mesurer l écart entre fréquences observées et théoriques? En deçà/au delà de quel écart décide-t-on que le dé est truqué?

7 La théorie Loi multinomiale & test du χ 2 On considère r valeurs/classes/modalités v i (i = 1,...,r) ; chacune des n unités d un échantillon aléatoire est affectée à v i avec probabilité p i ( r i=1 p i = 1). a voir Saporta G., Probabilités Analyse de Données et Statistique (1990), Ed. TECHNIP, pp

8 La théorie Loi multinomiale & test du χ 2 On considère r valeurs/classes/modalités v i (i = 1,...,r) ; chacune des n unités d un échantillon aléatoire est affectée à v i avec probabilité p i ( r i=1 p i = 1). Le nombre N i d unités affectées à v i ( r i=1 N i = n) est aléatoire et N = (N 1,...,N r) est distribué selon la loi multinomiale M(n;(p 1 ;...; p r)). a voir Saporta G., Probabilités Analyse de Données et Statistique (1990), Ed. TECHNIP, pp

9 La théorie Loi multinomiale & test du χ 2 On considère r valeurs/classes/modalités v i (i = 1,...,r) ; chacune des n unités d un échantillon aléatoire est affectée à v i avec probabilité p i ( r i=1 p i = 1). Le nombre N i d unités affectées à v i ( r i=1 N i = n) est aléatoire et N = (N 1,...,N r) est distribué selon la loi multinomiale M(n;(p 1 ;...; p r)). valeur/classe/modalité v 1 v 2... v r effectif observé N 1 N 2... N r effectif théorique np 1 np 2... np r a voir Saporta G., Probabilités Analyse de Données et Statistique (1990), Ed. TECHNIP, pp

10 La théorie Loi multinomiale & test du χ 2 On considère r valeurs/classes/modalités v i (i = 1,...,r) ; chacune des n unités d un échantillon aléatoire est affectée à v i avec probabilité p i ( r i=1 p i = 1). Le nombre N i d unités affectées à v i ( r i=1 N i = n) est aléatoire et N = (N 1,...,N r) est distribué selon la loi multinomiale M(n;(p 1 ;...; p r)). valeur/classe/modalité v 1 v 2... v r effectif observé N 1 N 2... N r effectif théorique np 1 np 2... np r On en déduit a : r D = (N i np i ) 2 /(np i ) L χ 2 r 1 (1) i=1 a voir Saporta G., Probabilités Analyse de Données et Statistique (1990), Ed. TECHNIP, pp

11 La théorie Loi multinomiale & test du χ 2 On considère r valeurs/classes/modalités v i (i = 1,...,r) ; chacune des n unités d un échantillon aléatoire est affectée à v i avec probabilité p i ( r i=1 p i = 1). Le nombre N i d unités affectées à v i ( r i=1 N i = n) est aléatoire et N = (N 1,...,N r) est distribué selon la loi multinomiale M(n;(p 1 ;...; p r)). valeur/classe/modalité v 1 v 2... v r effectif observé N 1 N 2... N r effectif théorique np 1 np 2... np r On en déduit a : D = r (N i np i ) 2 /(np i ) L χ 2 r 1 (1) i=1 (1) permet de définir un test (asymptotique) du χ 2 comparant (p 1,...,p r) à une valeur de référence (p 0 1,...,p0 r ) ]0, 1[r : a voir Saporta G., Probabilités Analyse de Données et Statistique (1990), Ed. TECHNIP, pp

12 La théorie Loi multinomiale & test du χ 2 On considère r valeurs/classes/modalités v i (i = 1,...,r) ; chacune des n unités d un échantillon aléatoire est affectée à v i avec probabilité p i ( r i=1 p i = 1). Le nombre N i d unités affectées à v i ( r i=1 N i = n) est aléatoire et N = (N 1,...,N r) est distribué selon la loi multinomiale M(n;(p 1 ;...; p r)). valeur/classe/modalité v 1 v 2... v r effectif observé N 1 N 2... N r effectif théorique np 1 np 2... np r On en déduit a : D = r (N i np i ) 2 /(np i ) L χ 2 r 1 (1) i=1 (1) permet de définir un test (asymptotique) du χ 2 comparant (p 1,...,p r) à une valeur de référence (p 0 1,...,p0 r ) ]0, 1[r : le test : H 0 : i, p i = p 0 i vs H 1 : i, p i p 0 i a voir Saporta G., Probabilités Analyse de Données et Statistique (1990), Ed. TECHNIP, pp

13 La théorie Loi multinomiale & test du χ 2 On considère r valeurs/classes/modalités v i (i = 1,...,r) ; chacune des n unités d un échantillon aléatoire est affectée à v i avec probabilité p i ( r i=1 p i = 1). Le nombre N i d unités affectées à v i ( r i=1 N i = n) est aléatoire et N = (N 1,...,N r) est distribué selon la loi multinomiale M(n;(p 1 ;...; p r)). valeur/classe/modalité v 1 v 2... v r effectif observé N 1 N 2... N r effectif théorique np 1 np 2... np r On en déduit a : D = r (N i np i ) 2 /(np i ) L χ 2 r 1 (1) i=1 (1) permet de définir un test (asymptotique) du χ 2 comparant (p 1,...,p r) à une valeur de référence (p 0 1,...,p0 r ) ]0, 1[r : le test : H 0 : i, p i = p 0 i vs H 1 : i, p i p 0 i la statistique de test : D 0 = r i=1 (N i np 0 i )2 /(np 0 i ) ap χ2 r 1 sous H 0 a voir Saporta G., Probabilités Analyse de Données et Statistique (1990), Ed. TECHNIP, pp

14 La théorie Loi multinomiale & test du χ 2 On considère r valeurs/classes/modalités v i (i = 1,...,r) ; chacune des n unités d un échantillon aléatoire est affectée à v i avec probabilité p i ( r i=1 p i = 1). Le nombre N i d unités affectées à v i ( r i=1 N i = n) est aléatoire et N = (N 1,...,N r) est distribué selon la loi multinomiale M(n;(p 1 ;...; p r)). valeur/classe/modalité v 1 v 2... v r effectif observé N 1 N 2... N r effectif théorique np 1 np 2... np r On en déduit a : D = r (N i np i ) 2 /(np i ) L χ 2 r 1 (1) i=1 (1) permet de définir un test (asymptotique) du χ 2 comparant (p 1,...,p r) à une valeur de référence (p 0 1,...,p0 r ) ]0, 1[r : le test : H 0 : i, p i = p 0 i vs H 1 : i, p i p 0 i la statistique de test : D 0 = r i=1 (N i np 0 i )2 /(np 0 i ) ap χ2 r 1 sous H 0 zone de rejet de H 0 au seuil α : D 0 > χ 2 r 1;1 α a voir Saporta G., Probabilités Analyse de Données et Statistique (1990), Ed. TECHNIP, pp

15 Exercice 1. Le dé est-il truqué? face effectif observé FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

16 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

17 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 avant de lancer le dé Chacun des 100 lancers (n = 100) fera apparaître l une des six faces (r = 6). N i : nbre aléatoire d apparitions de la face i au cours des 100 lancers. FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

18 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 avant de lancer le dé Chacun des 100 lancers (n = 100) fera apparaître l une des six faces (r = 6). N i : nbre aléatoire d apparitions de la face i au cours des 100 lancers. Si le dé est équilibré la probabilité p i d apparition de la face i est 1/6 pour tout i. FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

19 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 avant de lancer le dé Chacun des 100 lancers (n = 100) fera apparaître l une des six faces (r = 6). N i : nbre aléatoire d apparitions de la face i au cours des 100 lancers. Si le dé est équilibré la probabilité p i d apparition de la face i est 1/6 pour tout i. le test : H 0 : i, p i = 1/6 (dé équilibré) vs H 1 : i, p i 1/6 (dé truqué) FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

20 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 avant de lancer le dé Chacun des 100 lancers (n = 100) fera apparaître l une des six faces (r = 6). N i : nbre aléatoire d apparitions de la face i au cours des 100 lancers. Si le dé est équilibré la probabilité p i d apparition de la face i est 1/6 pour tout i. le test : H 0 : i, p i = 1/6 (dé équilibré) vs H 1 : i, p i 1/6 (dé truqué) la statistique de test : D 0 = 6 i=1 (N i 100/6) 2 /(100/6) ap χ 2 5 sous H 0 FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

21 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 avant de lancer le dé Chacun des 100 lancers (n = 100) fera apparaître l une des six faces (r = 6). N i : nbre aléatoire d apparitions de la face i au cours des 100 lancers. Si le dé est équilibré la probabilité p i d apparition de la face i est 1/6 pour tout i. le test : H 0 : i, p i = 1/6 (dé équilibré) vs H 1 : i, p i 1/6 (dé truqué) la statistique de test : D 0 = 6 i=1 (N i 100/6) 2 /(100/6) ap χ 2 5 sous H 0 si H 0 est vraie on a (environ) 1 chance sur 100 d observer : D 0 > χ 2 5;0,99 FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

22 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 avant de lancer le dé Chacun des 100 lancers (n = 100) fera apparaître l une des six faces (r = 6). N i : nbre aléatoire d apparitions de la face i au cours des 100 lancers. Si le dé est équilibré la probabilité p i d apparition de la face i est 1/6 pour tout i. le test : H 0 : i, p i = 1/6 (dé équilibré) vs H 1 : i, p i 1/6 (dé truqué) la statistique de test : D 0 = 6 i=1 (N i 100/6) 2 /(100/6) ap χ 2 5 sous H 0 si H 0 est vraie on a (environ) 1 chance sur 100 d observer : D 0 > χ 2 5;0,99 une fois le dé lancé FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

23 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 avant de lancer le dé Chacun des 100 lancers (n = 100) fera apparaître l une des six faces (r = 6). N i : nbre aléatoire d apparitions de la face i au cours des 100 lancers. Si le dé est équilibré la probabilité p i d apparition de la face i est 1/6 pour tout i. le test : H 0 : i, p i = 1/6 (dé équilibré) vs H 1 : i, p i 1/6 (dé truqué) la statistique de test : D 0 = 6 i=1 (N i 100/6) 2 /(100/6) ap χ 2 5 sous H 0 si H 0 est vraie on a (environ) 1 chance sur 100 d observer : D 0 > χ 2 5;0,99 une fois le dé lancé D 0 = (7 100/6) 2 /(100/6) + + (16 100/6) 2 /(100/6) 11 FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

24 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 avant de lancer le dé Chacun des 100 lancers (n = 100) fera apparaître l une des six faces (r = 6). N i : nbre aléatoire d apparitions de la face i au cours des 100 lancers. Si le dé est équilibré la probabilité p i d apparition de la face i est 1/6 pour tout i. le test : H 0 : i, p i = 1/6 (dé équilibré) vs H 1 : i, p i 1/6 (dé truqué) la statistique de test : D 0 = 6 i=1 (N i 100/6) 2 /(100/6) ap χ 2 5 sous H 0 si H 0 est vraie on a (environ) 1 chance sur 100 d observer : D 0 > χ 2 5;0,99 une fois le dé lancé D 0 = (7 100/6) 2 /(100/6) + + (16 100/6) 2 /(100/6) 11 < χ 2 5;0,99 15b FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

25 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 avant de lancer le dé Chacun des 100 lancers (n = 100) fera apparaître l une des six faces (r = 6). N i : nbre aléatoire d apparitions de la face i au cours des 100 lancers. Si le dé est équilibré la probabilité p i d apparition de la face i est 1/6 pour tout i. le test : H 0 : i, p i = 1/6 (dé équilibré) vs H 1 : i, p i 1/6 (dé truqué) la statistique de test : D 0 = 6 i=1 (N i 100/6) 2 /(100/6) ap χ 2 5 sous H 0 si H 0 est vraie on a (environ) 1 chance sur 100 d observer : D 0 > χ 2 5;0,99 une fois le dé lancé D 0 = (7 100/6) 2 /(100/6) + + (16 100/6) 2 /(100/6) 11 < χ 2 5;0,99 15b interprétation ou le dé est équilibré (H 0 vraie) : la valeur D 0 = 11 observée est l une des 99% inférieures à χ 2 5;0,99 ou bien le dé est truqué. FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

26 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 avant de lancer le dé Chacun des 100 lancers (n = 100) fera apparaître l une des six faces (r = 6). N i : nbre aléatoire d apparitions de la face i au cours des 100 lancers. Si le dé est équilibré la probabilité p i d apparition de la face i est 1/6 pour tout i. le test : H 0 : i, p i = 1/6 (dé équilibré) vs H 1 : i, p i 1/6 (dé truqué) la statistique de test : D 0 = 6 i=1 (N i 100/6) 2 /(100/6) ap χ 2 5 sous H 0 si H 0 est vraie on a (environ) 1 chance sur 100 d observer : D 0 > χ 2 5;0,99 une fois le dé lancé D 0 = (7 100/6) 2 /(100/6) + + (16 100/6) 2 /(100/6) 11 < χ 2 5;0,99 15b interprétation ou le dé est équilibré (H 0 vraie) : la valeur D 0 = 11 observée est l une des 99% inférieures à χ 2 5;0,99 ou bien le dé est truqué. décision FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

27 Exercice 1. Le dé est-il truqué? face effectif observé effectif théorique 100/6 100/6 100/6 100/6 100/6 100/6 avant de lancer le dé Chacun des 100 lancers (n = 100) fera apparaître l une des six faces (r = 6). N i : nbre aléatoire d apparitions de la face i au cours des 100 lancers. Si le dé est équilibré la probabilité p i d apparition de la face i est 1/6 pour tout i. le test : H 0 : i, p i = 1/6 (dé équilibré) vs H 1 : i, p i 1/6 (dé truqué) la statistique de test : D 0 = 6 i=1 (N i 100/6) 2 /(100/6) ap χ 2 5 sous H 0 si H 0 est vraie on a (environ) 1 chance sur 100 d observer : D 0 > χ 2 5;0,99 une fois le dé lancé D 0 = (7 100/6) 2 /(100/6) + + (16 100/6) 2 /(100/6) 11 < χ 2 5;0,99 15b interprétation ou le dé est équilibré (H 0 vraie) : la valeur D 0 = 11 observée est l une des 99% inférieures à χ 2 5;0,99 ou bien le dé est truqué. décision Au seuil de 1% on ne rejette pas l hypothèse H 0 : le dé est équilibré. FALSE) b sous R, le quantile χ 2 5;0,99 est donné par qchisq(0.99, 5, ncp = 0, lower.tail = TRUE, log.p =

28 Exercice 2. Adéquation à une loi exponentielle durée de vie [0; 1000] ]1000; 2000] ]2000; 3000] ]3000; 4000] ]4000; 5000] ]5000; 6000] effectif observé La durée de vie des ampoules provient-elle de E(1/1000)?

29 Exercice 2. Adéquation à une loi exponentielle durée de vie [0; 1000] ]1000; 2000] ]2000; 3000] ]3000; 4000] ]4000; 5000] ]5000; 6000] effectif observé La durée de vie des ampoules provient-elle de E(1/1000)? Six classes (r = 6) ; on y répartit la durée de vie d un échantillon aléatoire de 50 ampoules (n = 50). N i : le nbre aléatoire d ampoules dans la classe i.

30 Exercice 2. Adéquation à une loi exponentielle durée de vie [0; 1000] ]1000; 2000] ]2000; 3000] ]3000; 4000] ]4000; 5000] ]5000; 6000] effectif observé La durée de vie des ampoules provient-elle de E(1/1000)? Six classes (r = 6) ; on y répartit la durée de vie d un échantillon aléatoire de 50 ampoules (n = 50). N i : le nbre aléatoire d ampoules dans la classe i. Si la durée de vie des ampoules est distribuée selon E(1/1000), la probabilité p i qu une ampoule soit dans la classe i est : e i+1 e i.

31 Exercice 2. Adéquation à une loi exponentielle durée de vie [0; 1000] ]1000; 2000] ]2000; 3000] ]3000; 4000] ]4000; 5000] ]5000; 6000] effectif observé effectif théorique 31, 6 11, 6 4, 3 1, 6 0, 6 0, 2 La durée de vie des ampoules provient-elle de E(1/1000)? Six classes (r = 6) ; on y répartit la durée de vie d un échantillon aléatoire de 50 ampoules (n = 50). N i : le nbre aléatoire d ampoules dans la classe i. Si la durée de vie des ampoules est distribuée selon E(1/1000), la probabilité p i qu une ampoule soit dans la classe i est : e i+1 e i.

32 Exercice 2. Adéquation à une loi exponentielle durée de vie [0; 1000] ]1000; 2000] ]2000; 3000] ]3000; 4000] ]4000; 5000] ]5000; 6000] effectif observé effectif théorique 31, 6 11, 6 4, 3 1, 6 0, 6 0, 2 La durée de vie des ampoules provient-elle de E(1/1000)? Six classes (r = 6) ; on y répartit la durée de vie d un échantillon aléatoire de 50 ampoules (n = 50). N i : le nbre aléatoire d ampoules dans la classe i. Si la durée de vie des ampoules est distribuée selon E(1/1000), la probabilité p i qu une ampoule soit dans la classe i est : e i+1 e i. le test : H 0 : i, p i = e i+1 e i vs H 1 : i, p i e i+1 e i

33 Exercice 2. Adéquation à une loi exponentielle durée de vie [0; 1000] ]1000; 2000] ]2000; 3000] ]3000; 4000] ]4000; 5000] ]5000; 6000] effectif observé effectif théorique 31, 6 11, 6 4, 3 1, 6 0, 6 0, 2 La durée de vie des ampoules provient-elle de E(1/1000)? Six classes (r = 6) ; on y répartit la durée de vie d un échantillon aléatoire de 50 ampoules (n = 50). N i : le nbre aléatoire d ampoules dans la classe i. Si la durée de vie des ampoules est distribuée selon E(1/1000), la probabilité p i qu une ampoule soit dans la classe i est : e i+1 e i. le test : H 0 : i, p i = e i+1 e i vs H 1 : i, p i e i+1 e i la statistique de test : D 0 = 6 i=1 (N i 50 (e i+1 e i )) 2 /(50 (e i+1 e i ))

34 Exercice 2. Adéquation à une loi exponentielle durée de vie [0; 1000] ]1000; 2000] ]2000; 3000] ]3000; 4000] ]4000; 5000] ]5000; 6000] effectif observé effectif théorique 31, 6 11, 6 4, 3 1, 6 0, 6 0, 2 La durée de vie des ampoules provient-elle de E(1/1000)? Six classes (r = 6) ; on y répartit la durée de vie d un échantillon aléatoire de 50 ampoules (n = 50). N i : le nbre aléatoire d ampoules dans la classe i. Si la durée de vie des ampoules est distribuée selon E(1/1000), la probabilité p i qu une ampoule soit dans la classe i est : e i+1 e i. le test : H 0 : i, p i = e i+1 e i vs H 1 : i, p i e i+1 e i la statistique de test : D 0 = 6 i=1 (N i 50 (e i+1 e i )) 2 /(50 (e i+1 e i )) sous H 0 : D 0 ap χ 2 5

35 Exercice 2. Adéquation à une loi exponentielle durée de vie [0; 1000] ]1000; 2000] ]2000; 3000] ]3000; 4000] ]4000; 5000] ]5000; 6000] effectif observé effectif théorique 31, 6 11, 6 4, 3 1, 6 0, 6 0, 2 La durée de vie des ampoules provient-elle de E(1/1000)? Six classes (r = 6) ; on y répartit la durée de vie d un échantillon aléatoire de 50 ampoules (n = 50). N i : le nbre aléatoire d ampoules dans la classe i. Si la durée de vie des ampoules est distribuée selon E(1/1000), la probabilité p i qu une ampoule soit dans la classe i est : e i+1 e i. le test : H 0 : i, p i = e i+1 e i vs H 1 : i, p i e i+1 e i la statistique de test : D 0 = 6 i=1 (N i 50 (e i+1 e i )) 2 /(50 (e i+1 e i )) sous H 0 : D 0 ap χ 2 5 zone de rejet de H 0 au seuil de 10% : D 0 > χ 2 5;0,90

36 Exercice 2. Adéquation à une loi exponentielle durée de vie [0; 1000] ]1000; 2000] ]2000; 3000] ]3000; 4000] ]4000; 5000] ]5000; 6000] effectif observé effectif théorique 31, 6 11, 6 4, 3 1, 6 0, 6 0, 2 La durée de vie des ampoules provient-elle de E(1/1000)? Six classes (r = 6) ; on y répartit la durée de vie d un échantillon aléatoire de 50 ampoules (n = 50). N i : le nbre aléatoire d ampoules dans la classe i. Si la durée de vie des ampoules est distribuée selon E(1/1000), la probabilité p i qu une ampoule soit dans la classe i est : e i+1 e i. le test : H 0 : i, p i = e i+1 e i vs H 1 : i, p i e i+1 e i la statistique de test : D 0 = 6 i=1 (N i 50 (e i+1 e i )) 2 /(50 (e i+1 e i )) sous H 0 : D 0 ap χ 2 5 zone de rejet de H 0 au seuil de 10% : D 0 > χ 2 5;0,90 D 0 = (9 31, 6) 2 /31, (5 0, 2) 2 /0, 2 = 215, 0

37 Exercice 2. Adéquation à une loi exponentielle durée de vie [0; 1000] ]1000; 2000] ]2000; 3000] ]3000; 4000] ]4000; 5000] ]5000; 6000] effectif observé effectif théorique 31, 6 11, 6 4, 3 1, 6 0, 6 0, 2 La durée de vie des ampoules provient-elle de E(1/1000)? Six classes (r = 6) ; on y répartit la durée de vie d un échantillon aléatoire de 50 ampoules (n = 50). N i : le nbre aléatoire d ampoules dans la classe i. Si la durée de vie des ampoules est distribuée selon E(1/1000), la probabilité p i qu une ampoule soit dans la classe i est : e i+1 e i. le test : H 0 : i, p i = e i+1 e i vs H 1 : i, p i e i+1 e i la statistique de test : D 0 = 6 i=1 (N i 50 (e i+1 e i )) 2 /(50 (e i+1 e i )) sous H 0 : D 0 ap χ 2 5 zone de rejet de H 0 au seuil de 10% : D 0 > χ 2 5;0,90 D 0 = (9 31, 6) 2 /31, (5 0, 2) 2 /0, 2 = 215, 0> χ 2 5;0,90 9, 2.

38 Exercice 2. Adéquation à une loi exponentielle durée de vie [0; 1000] ]1000; 2000] ]2000; 3000] ]3000; 4000] ]4000; 5000] ]5000; 6000] effectif observé effectif théorique 31, 6 11, 6 4, 3 1, 6 0, 6 0, 2 La durée de vie des ampoules provient-elle de E(1/1000)? Six classes (r = 6) ; on y répartit la durée de vie d un échantillon aléatoire de 50 ampoules (n = 50). N i : le nbre aléatoire d ampoules dans la classe i. Si la durée de vie des ampoules est distribuée selon E(1/1000), la probabilité p i qu une ampoule soit dans la classe i est : e i+1 e i. le test : H 0 : i, p i = e i+1 e i vs H 1 : i, p i e i+1 e i la statistique de test : D 0 = 6 i=1 (N i 50 (e i+1 e i )) 2 /(50 (e i+1 e i )) sous H 0 : D 0 ap χ 2 5 zone de rejet de H 0 au seuil de 10% : D 0 > χ 2 5;0,90 D 0 = (9 31, 6) 2 /31, (5 0, 2) 2 /0, 2 = 215, 0> χ 2 5;0,90 9, 2. Au seuil de 10% on rejette l hypothèse H 0 selon laquelle la durée de vie des ampoules est distribuée selon la loi exponentielle E(1/1000).

39 Comparaison de plusieurs échantillons Outline Comparaison de plusieurs échantillons Indépendance de deux variables qualitatives

40 Indépendance de deux variables qualitatives Outline Comparaison de plusieurs échantillons Indépendance de deux variables qualitatives

41 Indépendance de deux variables qualitatives Un exemple Sexe & couleur des yeux : deux variables indépendantes? Un échantillon de 100 français : sexe couleur des yeux vert bleu marron garçon fille Tableau 1. effectifs conjoints

42 Indépendance de deux variables qualitatives Un exemple Sexe & couleur des yeux : deux variables indépendantes? Un échantillon de 100 français : sexe couleur des yeux vert bleu marron total garçon fille total Tableau 1. effectifs conjoints

43 Indépendance de deux variables qualitatives Un exemple Sexe & couleur des yeux : deux variables indépendantes? Un échantillon de 100 français : sexe couleur des yeux vert bleu marron total garçon fille total Tableau 1. effectifs conjoints couleur des yeux vert bleu marron total garçon 0, 10 0, 11 0, 28 0, 49 sexe fille 0, 07 0, 18 0, 26 0, 51 total 0, 17 0, 29 0, 54 1 Tableau 2. fréquences conjointes observées

44 Indépendance de deux variables qualitatives Un exemple Sexe & couleur des yeux : deux variables indépendantes? Un échantillon de 100 français : sexe couleur des yeux vert bleu marron total garçon fille total Tableau 1. effectifs conjoints couleur des yeux vert bleu marron total garçon 0, 10 0, 11 0, 28 0, 49 sexe fille 0, 07 0, 18 0, 26 0, 51 total 0, 17 0, 29 0, 54 1 Tableau 2. fréquences conjointes observées sexe couleur des yeux vert bleu marron total garçon 0, , , , 49 fille 0, , , , 51 total 0, 17 0, 29 0, 54 1 Tableau 3. fréquences conjointes théoriques

45 Indépendance de deux variables qualitatives Un exemple Sexe & couleur des yeux : deux variables indépendantes? Un échantillon de 100 français : sexe couleur des yeux vert bleu marron total garçon fille total Tableau 1. effectifs conjoints couleur des yeux vert bleu marron total garçon 0, 10 0, 11 0, 28 0, 49 sexe fille 0, 07 0, 18 0, 26 0, 51 total 0, 17 0, 29 0, 54 1 Tableau 2. fréquences conjointes observées sexe couleur des yeux vert bleu marron total garçon 0, , , , 49 fille 0, , , , 51 total 0, 17 0, 29 0, 54 1 Tableau 3. fréquences conjointes théoriques Si les variables sont indépendantes l écart entre fréquences observées et fréquences théoriques tend à disparaître lorsque la taille de l échantillon augmente.

46 Indépendance de deux variables qualitatives La théorie Table de contingence & test du χ 2 U et V sont deux variables qualitatives ; chacune des n unités d un échantillon aléatoire prend une des r valeurs u 1,...,u r de U et une des s valeurs v 1,...,v s de V.

47 Indépendance de deux variables qualitatives La théorie Table de contingence & test du χ 2 U et V sont deux variables qualitatives ; chacune des n unités d un échantillon aléatoire prend une des r valeurs u 1,...,u r de U et une des s valeurs v 1,...,v s de V. U V v 1 v 2 v s total u 1 N 11 N N 1s N 1 u 2 N 21 N N 2s N u r N r1 N r2... N rs N r total N 1 N 2 N s n

48 Indépendance de deux variables qualitatives La théorie Table de contingence & test du χ 2 U et V sont deux variables qualitatives ; chacune des n unités d un échantillon aléatoire prend une des r valeurs u 1,...,u r de U et une des s valeurs v 1,...,v s de V. U V v 1 v 2 v s total u 1 N 11 N N 1s N 1 u 2 N 21 N N 2s N u r N r1 N r2... N rs N r total N 1 N 2 N s n N ij : nbre aléatoire d unités prenant les valeurs u i et v j N i = s j=1 N ij : nbre aléatoire d unités prenant la valeur u i N j = r i=1 N ij : nbre aléatoire d unités prenant la valeur v j

49 Indépendance de deux variables qualitatives La théorie Table de contingence & test du χ 2 U et V sont deux variables qualitatives ; chacune des n unités d un échantillon aléatoire prend une des r valeurs u 1,...,u r de U et une des s valeurs v 1,...,v s de V. U V v 1 v 2 v s total u 1 N 11 N N 1s N 1 u 2 N 21 N N 2s N u r N r1 N r2... N rs N r total N 1 N 2 N s n N ij : nbre aléatoire d unités prenant les valeurs u i et v j N i = s j=1 N ij : nbre aléatoire d unités prenant la valeur u i N j = r i=1 N ij : nbre aléatoire d unités prenant la valeur v j le test : H 0 : U et V indépendantes vs H 1 : U et V non indépendantes

50 Indépendance de deux variables qualitatives La théorie Table de contingence & test du χ 2 U et V sont deux variables qualitatives ; chacune des n unités d un échantillon aléatoire prend une des r valeurs u 1,...,u r de U et une des s valeurs v 1,...,v s de V. U V v 1 v 2 v s total u 1 N 11 N N 1s N 1 u 2 N 21 N N 2s N u r N r1 N r2... N rs N r total N 1 N 2 N s n N ij : nbre aléatoire d unités prenant les valeurs u i et v j N i = s j=1 N ij : nbre aléatoire d unités prenant la valeur u i N j = r i=1 N ij : nbre aléatoire d unités prenant la valeur v j le test : H 0 : U et V indépendantes vs H 1 : U et V non indépendantes la statistique de test : D = r i=1 sj=1 (N ij N i N j /n) 2/(Ni N j /n)

51 Indépendance de deux variables qualitatives La théorie Table de contingence & test du χ 2 U et V sont deux variables qualitatives ; chacune des n unités d un échantillon aléatoire prend une des r valeurs u 1,...,u r de U et une des s valeurs v 1,...,v s de V. U V v 1 v 2 v s total u 1 N 11 N N 1s N 1 u 2 N 21 N N 2s N u r N r1 N r2... N rs N r total N 1 N 2 N s n N ij : nbre aléatoire d unités prenant les valeurs u i et v j N i = s j=1 N ij : nbre aléatoire d unités prenant la valeur u i N j = r i=1 N ij : nbre aléatoire d unités prenant la valeur v j le test : H 0 : U et V indépendantes vs H 1 : U et V non indépendantes la statistique de test : D = r i=1 sj=1 (N ij N i N j /n) 2/(Ni N j /n) sous H 0 : D ap χ 2 (r 1) (s 1)

52 Indépendance de deux variables qualitatives La théorie Table de contingence & test du χ 2 U et V sont deux variables qualitatives ; chacune des n unités d un échantillon aléatoire prend une des r valeurs u 1,...,u r de U et une des s valeurs v 1,...,v s de V. U V v 1 v 2 v s total u 1 N 11 N N 1s N 1 u 2 N 21 N N 2s N u r N r1 N r2... N rs N r total N 1 N 2 N s n N ij : nbre aléatoire d unités prenant les valeurs u i et v j N i = s j=1 N ij : nbre aléatoire d unités prenant la valeur u i N j = r i=1 N ij : nbre aléatoire d unités prenant la valeur v j le test : H 0 : U et V indépendantes vs H 1 : U et V non indépendantes la statistique de test : D = r i=1 sj=1 (N ij N i N j /n) 2/(Ni N j /n) sous H 0 : D ap χ 2 (r 1) (s 1) zone de rejet de H 0 au seuil α : D > χ 2 (r 1) (s 1);1 α

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

TESTS D HYPOTHÈSE FONDÉS SUR LE χ². http://fr.wikipedia.org/wiki/eugénisme

TESTS D HYPOTHÈSE FONDÉS SUR LE χ². http://fr.wikipedia.org/wiki/eugénisme TESTS D HYPOTHÈSE FONDÉS SUR LE χ² http://fr.wikipedia.org/wiki/eugénisme Logo du Second International Congress of Eugenics 1921. «Comme un arbre, l eugénisme tire ses constituants de nombreuses sources

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

Tableau 1 : Structure du tableau des données individuelles. INDIV B i1 1 i2 2 i3 2 i4 1 i5 2 i6 2 i7 1 i8 1

Tableau 1 : Structure du tableau des données individuelles. INDIV B i1 1 i2 2 i3 2 i4 1 i5 2 i6 2 i7 1 i8 1 UN GROUPE D INDIVIDUS Un groupe d individus décrit par une variable qualitative binaire DÉCRIT PAR UNE VARIABLE QUALITATIVE BINAIRE ANALYSER UN SOUS-GROUPE COMPARER UN SOUS-GROUPE À UNE RÉFÉRENCE Mots-clés

Plus en détail

Le chi carré. Le sommaire. Approche quantitative

Le chi carré. Le sommaire. Approche quantitative Approche quantitative Le chi carré Les objectifs pédagogiques Définir le test du chi carré Déterminer la nature des données propres au chi carré Savoir calculer le chi carré Savoir déterminer les fréquences

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

La nouvelle planification de l échantillonnage

La nouvelle planification de l échantillonnage La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Item 169 : Évaluation thérapeutique et niveau de preuve

Item 169 : Évaluation thérapeutique et niveau de preuve Item 169 : Évaluation thérapeutique et niveau de preuve COFER, Collège Français des Enseignants en Rhumatologie Date de création du document 2010-2011 Table des matières ENC :...3 SPECIFIQUE :...3 I Différentes

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! gaelle.buffet@ac-montpellier.fr

Plus en détail

Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061

Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061 Value at Risk 27 février & 13 mars 20061 CNAM Gréory Taillard CNAM Master Finance de marché et estion de capitaux 2 Value at Risk Biblioraphie Jorion, Philippe, «Value at Risk: The New Benchmark for Manain

Plus en détail

Il y a trois types principaux d analyse des résultats : l analyse descriptive, l analyse explicative et l analyse compréhensive.

Il y a trois types principaux d analyse des résultats : l analyse descriptive, l analyse explicative et l analyse compréhensive. L ANALYSE ET L INTERPRÉTATION DES RÉSULTATS Une fois les résultats d une investigation recueillis, on doit les mettre en perspective en les reliant au problème étudié et à l hypothèse formulée au départ:

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

Accès à l éducation postsecondaire : Comparaison entre l Ontario et d autres régions

Accès à l éducation postsecondaire : Comparaison entre l Ontario et d autres régions Accès à l éducation postsecondaire : Comparaison entre l Ontario et d autres régions Rapport préparé par Ross Finnie, Stephen Childs et Andrew Wismer pour le Conseil ontarien de la qualité de l enseignement

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

T de Student Khi-deux Corrélation

T de Student Khi-deux Corrélation Les tests d inférence statistiques permettent d estimer le risque d inférer un résultat d un échantillon à une population et de décider si on «prend le risque» (si 0.05 ou 5 %) Une différence de moyennes

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Etude des propriétés empiriques du lasso par simulations

Etude des propriétés empiriques du lasso par simulations Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Document d orientation sur les allégations issues d essais de non-infériorité

Document d orientation sur les allégations issues d essais de non-infériorité Document d orientation sur les allégations issues d essais de non-infériorité Février 2013 1 Liste de contrôle des essais de non-infériorité N o Liste de contrôle (les clients peuvent se servir de cette

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

Introduction au Calcul des Probabilités

Introduction au Calcul des Probabilités Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

LES DECIMALES DE π BERNARD EGGER

LES DECIMALES DE π BERNARD EGGER LES DECIMALES DE π BERNARD EGGER La génération de suites de nombres pseudo aléatoires est un enjeu essentiel pour la simulation. Si comme le dit B Ycard dans le cours écrit pour le logiciel SEL, «Paradoxalement,

Plus en détail

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Lecture critique d article Rappels Bio statistiques Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Plan du cours Rappels fondamentaux Statistiques descriptives Notions de tests statistiques

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO Auteur Baguinébié Bazongo 1 Ingénieur Statisticien Economiste Chef de l Unité de recherche à l Institut national

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

S initier aux probabilités simples «Question de chance!»

S initier aux probabilités simples «Question de chance!» «Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Limitations of the Playstation 3 for High Performance Cluster Computing

Limitations of the Playstation 3 for High Performance Cluster Computing Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

La simulation probabiliste avec Excel

La simulation probabiliste avec Excel La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier emmanuel.grenier@isab.fr Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Biostatistiques : Petits effectifs

Biostatistiques : Petits effectifs Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 patrick.devos@univ-lille2.fr Plan Données Générales : Définition des statistiques Principe de l

Plus en détail

Cours de Tests paramétriques

Cours de Tests paramétriques Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

USAGE DES RESEAUX SOCIAUX PAR LES APPRENANTS EN COTE D IVOIRE

USAGE DES RESEAUX SOCIAUX PAR LES APPRENANTS EN COTE D IVOIRE USAGE DES RESEAUX SOCIAUX PAR LES APPRENANTS EN COTE D IVOIRE Dr CLAUDE N. KOUTOU Enseignant/Chercheur (Université de Cocody, Abidjan) Chercheur PANAF - ROCARE CI nkoutou1@yahoo.fr PLAN DE PRESENTATION

Plus en détail

La fumée de tabac secondaire (FTS) en Mauricie et au Centre-du- Québec, indicateurs du plan commun tirés de l ESCC de 2007-2008

La fumée de tabac secondaire (FTS) en Mauricie et au Centre-du- Québec, indicateurs du plan commun tirés de l ESCC de 2007-2008 La fumée de tabac secondaire (FTS) en Mauricie et au Centre-du- Québec, indicateurs du plan commun tirés de l ESCC de 2007-2008 Ce document se veut une analyse succincte des indicateurs se rapportant à

Plus en détail

Package TestsFaciles

Package TestsFaciles Package TestsFaciles March 26, 2007 Type Package Title Facilite le calcul d intervalles de confiance et de tests de comparaison avec prise en compte du plan d échantillonnage. Version 1.0 Date 2007-03-26

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

Enquête auprès des parents

Enquête auprès des parents Projet Brosse à dents débutant Institut für Hygiene und Arbeitsphysiologie ETH-Zentrum, Clausiusstr. 25 8092 Zürich Adresse électronique: www_zahnbuerstenergonomie@web.ethz.ch Enquête auprès des parents

Plus en détail

En 2014, comment mener à bien une enquête aléatoire en population générale par téléphone?

En 2014, comment mener à bien une enquête aléatoire en population générale par téléphone? En 2014, comment mener à bien une enquête aléatoire en population générale par téléphone? Prémila Choolun 1, François Beck 2, Christophe David 1, Valérie Blineau 1, Romain Guignard 3, Arnaud Gautier 3,

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Tout ce que vous n avez jamais voulu savoir sur le χ 2 sans jamais avoir eu envie de le demander

Tout ce que vous n avez jamais voulu savoir sur le χ 2 sans jamais avoir eu envie de le demander Tout ce que vous n avez jamais voulu savoir sur le χ 2 sans jamais avoir eu envie de le demander Julien Barnier Centre Max Weber CNRS UMR 5283 julien.barnier@ens-lyon.fr 25 février 2013 Table des matières

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

LES FRANÇAIS ET LA COMPLEMENTAIRE SANTE

LES FRANÇAIS ET LA COMPLEMENTAIRE SANTE Centre de Recherche pour l Etude et l Observation des Conditions de Vie LES FRANÇAIS ET LA COMPLEMENTAIRE SANTE Anne LOONES Marie-Odile SIMON Août 2004 Département «Evaluation des Politiques Sociales»

Plus en détail

IFT3245. Simulation et modèles

IFT3245. Simulation et modèles IFT 3245 Simulation et modèles DIRO Université de Montréal Automne 2012 Tests statistiques L étude des propriétés théoriques d un générateur ne suffit; il estindispensable de recourir à des tests statistiques

Plus en détail

Formation appliquée aux missions d'expertises sinistres PLAN DE FORMATION

Formation appliquée aux missions d'expertises sinistres PLAN DE FORMATION mail: d2geo@yahoo.fr Page 1/6 PLAN DE FORMATION Formation réalisée en deux partie distinctes Durée totale de la formation 2 jours Présentation Cette première partie est enseignée en trois modules: a) Notions

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Programme des Nations Unies pour l'environnement

Programme des Nations Unies pour l'environnement NATIONS UNIES EP Programme des Nations Unies pour l'environnement Distr. GÉNÉRALE UNEP/OzL.Pro/ExCom/68/12 2 novembre 2012 FRANÇAIS ORIGINAL : ANGLAIS COMITÉ EXÉCUTIF DU FONDS MULTILATÉRAL AUX FINS D APPLICATION

Plus en détail

Guide de l utilisateur. Synchronisation de l Active Directory

Guide de l utilisateur. Synchronisation de l Active Directory Guide de l utilisateur Synchronisation de l Active Directory Juin 2013 Guide de l utilisateur de Synchro AD de TELUS L outil Synchro AD doit être téléchargé dans le contrôleur de domaine de votre entreprise.

Plus en détail

Cours 9 : Plans à plusieurs facteurs

Cours 9 : Plans à plusieurs facteurs Cours 9 : Plans à plusieurs facteurs Table des matières Section 1. Diviser pour regner, rassembler pour saisir... 3 Section 2. Définitions et notations... 3 2.1. Définitions... 3 2.2. Notations... 4 Section

Plus en détail

Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants)

Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants) CIVILITE-SES.doc - 1 - Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants) 1 PRÉSENTATION DU DOSSIER CIVILITE On s intéresse

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail