Sujet 4: Programmation stochastique propriétés de fonction de recours
|
|
|
- Adrien Beauchemin
- il y a 10 ans
- Total affichages :
Transcription
1 Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011
2 Dans ce sujet... 1 Propriétés de la fonction de recours Rappel Convexité dans les variables de première étape Convexité dans les données aléatoires 2 Bornes inférieures sur l optimum Inégalité de Jensen Approximation des scénarios indépendants 3 Bornes supérieures sur l optimum Inégalité d Edmundson-Mandansky Evaluation de la fonction de recours pour une solution réalisable
3 1 Propriétés de la fonction de recours Rappel Convexité dans les variables de première étape Convexité dans les données aléatoires 2 Bornes inférieures sur l optimum Inégalité de Jensen Approximation des scénarios indépendants 3 Bornes supérieures sur l optimum Inégalité d Edmundson-Mandansky Evaluation de la fonction de recours pour une solution réalisable
4 1 Propriétés de la fonction de recours Rappel Convexité dans les variables de première étape Convexité dans les données aléatoires 2 Bornes inférieures sur l optimum Inégalité de Jensen Approximation des scénarios indépendants 3 Bornes supérieures sur l optimum Inégalité d Edmundson-Mandansky Evaluation de la fonction de recours pour une solution réalisable
5 Rappel : problème de recours Le problème de recours avec une distribution finie: min s.à. c T x + Q(x) Ax = b, x X où Q(x) = j p j Q(x, ξ j ), l ensemble X est défini par les bornes et/ou par des spécifications que quelques-un des variables x soient entières, et Q(x, ξ) = min q(ξ)t y s.à. W (ξ)y = h(ξ) T (ξ)x, y Y Ici encore, l ensemble Y est défini par les bornes simples sur une variables et/ou par des spécifications que quelques-un des variables y soient entières.
6 c T x + j Rappel : formulation déterministe équivalent min p j (q(ξ j ) T y j ) (1) s.à. Ax = b (2) T (ξ j )x + W (ξ j )y j = h(ξ j ), j (3) x X ; y j Y, j (4) On appelera cette formulation FDE. N oubliez pas la structure bloque-diagonale de la matrice des contraintes.
7 La structure du probème de recours Les propriétés du problème de recours sont déterminées par cinq éléments: Y : les bornes et les spécifications entières (s il y en a) sur les variables de recours q(ξ): les coefficients de la fonction objective de recours h(ξ): la partie de la côté droite du problême de recours qui ne dépendent pas sur les variables de première étape T (ξ): les coefficients des variables de première étape dans les contraintes du problème du recours W (ξ): les coefficients des variables de recours dans les contraintes
8 Application: Localisation de dépôts (I) min f i x i + Q(x) i x i {0, 1}, i Q(x) = j p j Q(x, d j ) où Q(x, d j ) = min s.à. i,k c ikz j ik + k t ku j k i(zj ik + uj k ) dj k, k k zj ik Cap ix i, i z j ik 0, i, k; uj k 0, k
9 1 Propriétés de la fonction de recours Rappel Convexité dans les variables de première étape Convexité dans les données aléatoires 2 Bornes inférieures sur l optimum Inégalité de Jensen Approximation des scénarios indépendants 3 Bornes supérieures sur l optimum Inégalité d Edmundson-Mandansky Evaluation de la fonction de recours pour une solution réalisable
10 Définition de convexité Envelope convexe Soit X IR n un ensemble. conv(x ) = {x IR n : x 1, x 2 X et λ : 0 λ 1 tels que x = λx 1 + (1 λ)x 2 }. Fonction convexe Soit f (x) une fonction définie pour tout x conv(x ). f (x) est convexe ssi, x 1, x 2 conv(x ) et λ : 0 λ 1, f (λx 1 + (1 λ)x 2 ) λf (x 1 ) + (1 λ)f (x 2 )
11 Suppositions nécéssaires Quelles suppositions sont-elles nécéssaires pour que la fonction de scenario Q(x, ξ) soit convexe dans les variables x? Supposition (1) Y = {y : y 0} Ça veut dire que l ensemble Y ne comprend pas des spécifications que des variables soient entières.
12 Dual de la deuxième étape Pourquoi cette supposition nous intéresse? Q(x, ξ) = = min y s.à. max π s.à. Primal q(ξ) T y W (ξ)y = h(ξ) T (ξ)x y 0 Dual (h(ξ) T (ξ)x) T π W (ξ) T π q(ξ) π libre Remarquons que, dans les programmes linéaires ci-dessus, tous les éléments qui paraissent en rouge, brun, ou noir sont des paramètres. Seulement les éléments en bleu sont des variables. Maintenant, on peut appliquer la théorie de la programmation linéaire (et surtout la dualité) pour trouver des propriétés de la fonction de recours.
13 Convexité dans les variables de première étape Théorem (1) La fonction Q(x, ξ) est convexe en x. Preuve: Soit un x X et un scénario ξ. De la Supposition 1 on sait que q(x, ξ) = max π s.à. (h(ξ) T (ξ)x ) T π W (ξ) T π q(ξ) π libre. (5) Soit π la solution optimale (duale) de ce programme linéaire; alors q(x, ξ) = (h(ξ) T (ξ)x ) T π. Soit un autre point x X. Pour des raisons analogues, on sait que Q( x, ξ) = max π s.à. (h(ξ) T (ξ) x) T π W (ξ) T π q(ξ) π libre. (6)
14 Preuve de la convexité dans les variables de première étape Théorem (1) La fonction q(x, ξ) est convexe en x. Preuve: (suite) Maintenant on sait que Q( x, ξ) (h(ξ) T (ξ) x) T π. Pourquoi? π est optimale pour (5), alors réalisable. π est alors réalisable pour (6). Si π est optimale aussi pour (6), alors Q( x, ξ) = (h(ξ) T (ξ) x) T π. Si π n est pas optimale pour (6), soit π une solution optimale pour (6). Alors par la définition de l optimalité. Q( x, ξ) = (h(ξ) T (ξ) x) T π > (h(ξ) T (ξ) x) T π
15 Rémarques sur la preuve Pourquoi est-ce que cela suffit pour démontrer le théorem? Avant de continuer, rémarquons que Q( x, ξ) (h(ξ) T (ξ) x) T π, x X Q( x, ξ) π T h(ξ) (π T T (ξ)) x, x X. On a effectivement montré deux choses: 1 Pour chaque x X, la plan de tangent de la graphe de q(x, ξ) au point (x, q(x, ξ)) est inférieure ou égale à l évaluation de la fonction pour toute sa domaine. Ceci suffit pour montrer que la fonction est convexe en x. 2 La la plan de tangent mentionnée ci-dessus est définie par l inégalité Q(x, ξ) π T h(ξ) (π T T (ξ))x, c est à dire par h, T, et la solution optimale de la dual π. Bien que ce deuxième point n est pas nécéssaire pour la preuve de convexité, il sera essentiel pour des algorithmes de resolution de ce genre de problème.
16 1 Propriétés de la fonction de recours Rappel Convexité dans les variables de première étape Convexité dans les données aléatoires 2 Bornes inférieures sur l optimum Inégalité de Jensen Approximation des scénarios indépendants 3 Bornes supérieures sur l optimum Inégalité d Edmundson-Mandansky Evaluation de la fonction de recours pour une solution réalisable
17 Méthode de preuve analogue Pour identifier les conditions nécéssaires pour que la fonction de scenario Q(x, ξ) soit convexe dans les données aléatoires, il faut considérer encore le dual du problème de recours. Supposition (2) W (ξ) = W et q(ξ) = q, ξ possible (recours fixe) En mots, les coûts des décisions de recours et les effets qu ont les décisions de recours ne dépendent pas sur les scénarios. Théorem (2) La fonction Q(x, ξ) est convexe en ξ.
18 1 Propriétés de la fonction de recours Rappel Convexité dans les variables de première étape Convexité dans les données aléatoires 2 Bornes inférieures sur l optimum Inégalité de Jensen Approximation des scénarios indépendants 3 Bornes supérieures sur l optimum Inégalité d Edmundson-Mandansky Evaluation de la fonction de recours pour une solution réalisable
19 1 Propriétés de la fonction de recours Rappel Convexité dans les variables de première étape Convexité dans les données aléatoires 2 Bornes inférieures sur l optimum Inégalité de Jensen Approximation des scénarios indépendants 3 Bornes supérieures sur l optimum Inégalité d Edmundson-Mandansky Evaluation de la fonction de recours pour une solution réalisable
20 Valeur optimal du problème déterministe Résultat classique de Jensen: Théorem Etant donné une variable aléatoire ξ et une fonction f (x, ξ) qui est convexe en ξ, une borne sur l espérance est donné par l inégalité E ξ [f (x, ξ)] f (x, E ξ [ξ]) Dans les modéles de programmation stochastique, on remplace la distribution par la moyenne, et ensuite on resoud le problème résultant. Le valeur optimal de ce problème beaucoup plus simple (il n y a pas de scénarios multiples) est une borne inférieure sur le valeur optimal du problème original. Il faut que tous les deux Suppositions (1 et 2) soient satisfaites pour cette borne à être valide.
21 1 Propriétés de la fonction de recours Rappel Convexité dans les variables de première étape Convexité dans les données aléatoires 2 Bornes inférieures sur l optimum Inégalité de Jensen Approximation des scénarios indépendants 3 Bornes supérieures sur l optimum Inégalité d Edmundson-Mandansky Evaluation de la fonction de recours pour une solution réalisable
22 Une relaxation par decomposition Rappelons la définition de WS j pour chaque scenario ξ j : WS j = min x,y s.à. c T x j + q(ξ j ) T y j Ax j = b T (ξ j )x j + W (ξ j )y j = h(ξ j ) x j X, y j Y. Proposition (2) La somme j pj WS j est une borne inférieure sur la valeur optimale de SP. En effet, si OPT SH est la valeur optimale de SP, on a démontré dans le dernier sujet que EVPI = OPT SH p j WS j, j et on a aussi démontré que EVPI > 0.
23 A noter La méthode utilisée pour définir cette borne correspond à la décomposition complète (même des variables de première étape) par scénarios. Cette borne a l avantage qu elle est valide, même si ni Supposition 1 ni Supposition 2 ne soient satisfaites.
24 1 Propriétés de la fonction de recours Rappel Convexité dans les variables de première étape Convexité dans les données aléatoires 2 Bornes inférieures sur l optimum Inégalité de Jensen Approximation des scénarios indépendants 3 Bornes supérieures sur l optimum Inégalité d Edmundson-Mandansky Evaluation de la fonction de recours pour une solution réalisable
25 1 Propriétés de la fonction de recours Rappel Convexité dans les variables de première étape Convexité dans les données aléatoires 2 Bornes inférieures sur l optimum Inégalité de Jensen Approximation des scénarios indépendants 3 Bornes supérieures sur l optimum Inégalité d Edmundson-Mandansky Evaluation de la fonction de recours pour une solution réalisable
26 Approximation d une fonction convexe d au-dessus Idée: sur-approximer la fonction de recours par une fonction linéaire/affine par morceaux. On construit cette approximation par l identification des scénarios qui representent les valeurs extémes possibles des distribution aléatoires. Il faut que tous les deux Suppositions (1 et 2) soient satisfaites pour cette borne à être valide.
27 1 Propriétés de la fonction de recours Rappel Convexité dans les variables de première étape Convexité dans les données aléatoires 2 Bornes inférieures sur l optimum Inégalité de Jensen Approximation des scénarios indépendants 3 Bornes supérieures sur l optimum Inégalité d Edmundson-Mandansky Evaluation de la fonction de recours pour une solution réalisable
28 Evaluer Q( x) pour une solution de première étape x Soit x n importe quelle solution pour la premère étape (i.e., x vérifie A x = b et x X ). On peut définir ȳ 1,..., ȳ J par la resolution des probèmes Q(x, ξ j ), j = 1,..., J. La solution ( x, ȳ 1,..., ȳ J ) ainsi défini est réalisable pour FDE, et elle donne alors la borne supérieure de c T x + j p j (q(ξ j ) T ȳ j ). A remarquer: cette borne est valide même si les suppositions 1 et 2 ne sont pas satisfaites.
29 A souvenir Les suppositions réquises pour que la fonction de recours soit convexe en x en ξ Bornes sur l optimum inférieure: formule de Jensen (seulement valide si Q(x, ξ) est convexe en ξ) approximation des scénarios indépendants supérieure: formule de Edmundson-Mandansky (seulement valide si Q(x, ξ) est convexe en ξ) valeur objectif d une solution réalisable pour FDE Comment appliquer ces idées à nos applications
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Approximations variationelles des EDP Notes du Cours de M2
Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Optimisation des fonctions de plusieurs variables
Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables
Programmation Linéaire - Cours 1
Programmation Linéaire - Cours 1 P. Pesneau [email protected] Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.
RECHERCHE OPERATIONNELLE
RECHERCHE OPERATIONNELLE 0. Introduction. Ce cours a été enseigné jusqu en 2002, en année de licence, à la MIAGE de NANCY. L objectif principal de ce cours est d acquérir une connaissance approfondie de
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes
Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
4. Martingales à temps discret
Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Séminaire TEST. 1 Présentation du sujet. October 18th, 2013
Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
Construction d un cercle tangent à deux cercles donnés.
Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Journées Télécom-UPS «Le numérique pour tous» David A. Madore. [email protected]. 29 mai 2015
et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech [email protected] 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
Chp. 4. Minimisation d une fonction d une variable
Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
Théorèmes de Point Fixe et Applications 1
Théorèmes de Point Fixe et Applications 1 Victor Ginsburgh Université Libre de Bruxelles et CORE, Louvain-la-Neuve Janvier 1999 Published in C. Jessua, C. Labrousse et D. Vitry, eds., Dictionnaire des
Modèles et Méthodes de Réservation
Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
6 Equations du première ordre
6 Equations u première orre 6.1 Equations linéaires Consiérons l équation a k (x) k u = b(x), (6.1) où a 1,...,a n,b sont es fonctions continûment ifférentiables sur R. Soit D un ouvert e R et u : D R
Espérance conditionnelle
Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Resolution limit in community detection
Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Processus aléatoires avec application en finance
Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Raisonnement probabiliste
Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte
LES MÉTHODES DE POINT INTÉRIEUR 1
Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences
Chapitre VI - Méthodes de factorisation
Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)
Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie
Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E
Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie
Master de Recherche première année. Programme de cours 2008-2011
Master de Recherche première année Mention : Mathématiques et Applications Spécialité : Mathématiques fondamentales et appliquées Responsable : Xue Ping WANG Programme de cours 2008-2011 Module M1 : Analyse
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation
IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
4.2 Unités d enseignement du M1
88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Dérivées d ordres supérieurs. Application à l étude d extrema.
Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une
Principe de symétrisation pour la construction d un test adaptatif
Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, [email protected] 2 Université
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Ecran : Processeur : OS : Caméra : Communication : Mémoire : Connectique : Audio : Batterie : Autonomie : Dimensions : Poids : DAS :
SMARTPHONE - DUAL-CORE - NOIR 3483072425242 SMARTPHONE - DUAL-CORE - BLEU XXXX SMARTPHONE - DUAL-CORE - BLANC 3483072485246 SMARTPHONE - DUAL-CORE - ROSE 3483073704131 SMARTPHONE - DUAL-CORE - ROUGE XXXX
Programme de la classe de première année MPSI
Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal
La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal
CHAPITRE 5. Stratégies Mixtes
CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,
INFO-F-310 - Algorithmique 3 et Recherche Opérationnelle
INFO-F- - Algorithmique et Recherche Opérationnelle Yves De Smet Bernard Fortz - Table des matières I Introduction Aide à la décision et modèles mathématiques Quelques exemples de modèles mathématiques
Théorie et codage de l information
Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Calcul différentiel. Chapitre 1. 1.1 Différentiabilité
Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Plus courts chemins, programmation dynamique
1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité
1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
