Lois de probabilité. Anita Burgun
|
|
|
- Gilbert Éthier
- il y a 10 ans
- Total affichages :
Transcription
1 Lois de probabilité Anita Burgun
2 Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage théorique vs pourcentage observé) Calcul des probabilités : lois
3 Contenu des cours Loi binomiale Loi hypergéométrique Loi de Poisson Loi normale Loi du chi2 (définition) Loi T de Student (définition)
4 Contenu des cours Loi binomiale Loi hypergéométrique Loi de Poisson Loi normale Loi du chi2 (définition) Loi T de Student (définition)
5 Loi binomiale Loi née du jeu: gagner aux dés en sortant des as On utilise la loi binomiale dans 2 situations: lorsqu on désire connaître 1) la probabilité de k succès au bout de n tentatives sachant la probabilité P de gagner à chacune des tentatives. C est la situation de jeu de hasard: quelle est la probabilité de tirer 3 as en lançant 10 fois un dé? 2) La probabilité d observer k individus possédant une caractéristique c donnée dans un échantillon de n individus tirés d une population où la proportion P de la caractéristique c est connue. Quelle est la probabilité d observer 3 malades dans un échantillon de 10 sujets choisis au hasard dans une population où la fréquence de la maladie est de 17%?
6 Rappel Une v.a. X est discrète si l ensemble des réalisations possibles x 1, x 2,..x n pour cette variable est fini ou dénombrable. Famille de 4 enfants dont les deux parents sont porteurs d un gène d une maladie héréditaire. Nombre d enfants atteints. X=0,1,2,3,4 Nombre d étudiants ayant les yeux bleus en PACES. X=0,1,2,,n
7 Définition A chacune des réalisations x i de la v.a. X est associée une probabilité P (X=x i ) = p i L ensemble des couples (x i, p i ) forme une loi de probabilité. n! "i,0 # p i #1 " p i =1 i= 0
8 Loi de Bernoulli Soit une expérience aléatoire ayant deux résultats possibles : le succès (probabilité p) ou l échec (q=1-p) Famille de 4 enfants dont les deux parents sont porteurs d un gène d une maladie héréditaire m (récessive). La v.a. «avoir la maladie m» suit une loi de Bernoulli de paramètre p égal à 0.25 E(X) = p V(X)= p(1-p)
9 Loi binomiale On répète n fois dans des conditions identiques une expérience aléatoire dont l issue se traduit par l apparition ou la non apparition d un événement A de probabilité p, le résultat de chaque expérience étant indépendant des résultats précédents. Soit X le nombre d apparitions de l événement A parmi ces n expériences ( 0 X n). X suit une loi binomiale de paramètres n et p. B (n; p)
10 Loi binomiale On répète n fois dans des conditions identiques une expérience aléatoire dont l issue se traduit par l apparition ou la non apparition d un événement A de probabilité p, le résultat de chaque expérience étant indépendant des résultats précédents. Soit X le nombre d apparitions de l événement A parmi ces n expériences ( 0 X n). X suit une loi binomiale de paramètres n et p. A chaque expérience on peut associer une variable de Bernoulli
11 Loi binomiale (def 2) La somme de n v.a. de Bernoulli X i indépendantes et de même paramètre p est une v.a. discrète qui suit une loi binomiale de paramètres n et p X = n " X i i= 0
12 Loi binomiale Proba d obtenir k succès p(x = k) = C n k p k (1" p) n"k Nombre de manières de choisir k X i parmi n! Proba d obtenir (n-k) échecs
13 Loi binomiale p(x = k) = C n k p k (1" p) n"k P = p(x = k) = k! n! k! (n-k)! p k (1" p) n"k!
14 P 0 = (1" p) n P k +1 = n! (k +1)!(n " (k +1))! pk +1 (1 " p) n "k "1 P k +1 = n " k k +1 n! k!(n " k)! p (1 " p) pk (1 " p) n "k P k +1 = p (1" p) n " k k +1 P k
15 Pour aider dans les calculs (k +1)!= (k +1) " k! k!= (k +1)! k +1 1 k! = k +1 (k +1)!
16 Espérance, variance La somme de n v.a. de Bernoulli X i indépendantes et de même paramètre p est une v.a. discrète qui suit une loi binomiale de paramètres n et p X = n " X i i= 0
17 Espérance E(X 1 + X 2 ) = E(X 1 ) + E(X 2 ) X B (n; p) E(X) = " E (X i ) E(X) = np!
18 Variance V(X 1 + X 2 ) = V(X 1 ) + V(X 2 ) X B (n; p) V(X) = " V (X i ) V(X) = n p (1-p)!
19 Représentation graphique (1) Tiré de G Saporta, Probabilités, analyse de données et statistique Technip
20 Représentation graphique (2) n=5 Tiré de G Saporta, Probabilités, analyse de données et statistique Technip
21 Remarques utiles Dans certaines circonstances, la loi binomiale peut être approximée soit par une loi de Poisson (p petit) soit par une loi normale. La somme de 2 v.a. binomiales indépendantes et de même paramètre p est une v.a. binomiale X 1 + X 2 B (n 1 +n 2 ; p)
22 Illustration 1/3 Une substance S produit un érythème chez 15% des sujets en contact. On s intéresse à un groupe de 10 sujets manipulant la substance S
23 QCM : Une substance S produit un érythème chez 15% des sujets en contact. On s intéresse à un groupe de 10 sujets manipulant la substance S A- Il s agit d une loi binomiale B- La probabilité d observer au moins 1 sujet présentant un érythème dans le groupe de 10 sujets manipulant la substance S est d environ 0,35. C- La probabilité de n observer aucun sujet présentant un érythème dans le groupe de 10 sujets manipulant la substance S est d environ 0,2. D- La probabilité d observer au moins 4 sujets présentant un érythème dans le groupe de 10 sujets manipulant la substance S est d environ 0,05.
24 A- Loi binomiale, n=10, p=0.15 (A vrai) B- La probabilité d observer au moins 1 sujet présentant un érythème dans le groupe de 10 sujets manipulant la substance S est d environ 0,35. (B faux) p(x "1) =1# [ p(x = 0) ] p(x=0)= 0,197! p(x!1) =1" [ 0,197] = 0,8
25 Loi binomiale, n=10, p=0.15 C- La probabilité de n observer aucun sujet présentant un érythème dans le groupe de 10 sujets manipulant la substance S est d environ 0,2. (Vrai) p(x=0)= 0,197
26 Loi binomiale, n=10, p=0.15 D- La probabilité d observer au moins 4 sujets présentant un érythème dans le groupe de 10 sujets manipulant la substance S est d environ 0,05. (Vrai) p(x " 4) =1# [ p(x = 0) + p(x =1) + p(x = 2) + p(x = 3) ] p(x " 4) = [ p(x = 4) + p(x = 5) + p...+ p(x =10) ] p(x=0)= 0,197; p(x=1)=0,347; p(x=2)=0,276; p(x=3) =0,130 p(x " 4) =1# [ 0,950] = 0,05
27 Illustration (2/3) Quelle est la probabilité de tirer 3 as en jetant 10 fois un dé? On pose k= nb d as à sortir=3 n= nb de tentatives=10 p= probabilité de sortir un as= 1/6= 0.17 p(3as) = 10! ( 3! ( 10 " 3)! 0.17 ) 3 ( 0.83) 7 = 0.16!
28 ! Illustration (3/3) Quelle est la probabilité d observer 3 malades dans un échantillon de 10 sujets choisis au hasard dans une population où la fréquence de la maladie m est 17%? On pose k= nb de malades =3 n= taille de l échantillon=10 p= fréquence de la maladie dans la population= 0.17 p(3malades) = 10! ( 3! ( 10 " 3)! 0.17 ) 3 ( 0.83) 7 = 0.16
29 Illustration (3/3) Quelle est la probabilité d observer moins de 4 malades dans un échantillon de 10 sujets choisis au hasard dans une population où la fréquence de la maladie m est 17%? p(x < 4) = p(0) + p(1) + p(2) + p(3) p(x < 4) = = 0.926!
30 Références Régis Beuscart et al. Biostatistique, Omniscience Pour le programme Gilbert Saporta Probabilités, analyses des données et statistiques. Technip Pour connaître les démonstrations et approfondir les aspects mathématiques des biostat Daniel Schwartz Méthodes statistiques à l'usage des médecins et des biologistes. Flammarion Médecine Science Pour les applications médicales
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
Chapitre 3 : INFERENCE
Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014
Tests du χ 2 Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014 A. Lourme http://alexandrelourme.free.fr Outline
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7
Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
Variables Aléatoires. Chapitre 2
Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
Que faire lorsqu on considère plusieurs variables en même temps?
Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites
1 TD1 : rappels sur les ensembles et notion de probabilité
1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
Calcul élémentaire des probabilités
Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
Loi d une variable discrète
MATHEMATIQUES TD N : VARIABLES DISCRETES - Corrigé. P[X = k] 0 k point de discontinuité de F et P[X = k] = F(k + ) F(k ) Ainsi, P[X = ] =, P[X = 0] =, P[X = ] = R&T Saint-Malo - nde année - 0/0 Loi d une
La survie nette actuelle à long terme Qualités de sept méthodes d estimation
La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.
Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient
Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes
Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. [email protected]. http ://freakonometrics.blog.free.
Actuariat I ACT2121 septième séance Arthur Charpentier [email protected] http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Correction du baccalauréat STMG Polynésie 17 juin 2014
Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES
BTS GPN ERE ANNEE-MATHEMATIQUES-DENOMBREMENT-COMBINATOIRE-EXERCICE DE SYNTHESE EXERCICE RECAPITULATIF (DE SYNTHESE) CORRIGE Le jeu au poker fermé DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES On joue
La simulation probabiliste avec Excel
La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier [email protected] Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité
1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :
S initier aux probabilités simples «Question de chance!»
«Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif
BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL
BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par
P1 : Corrigés des exercices
P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à
Probabilités et statistique. Benjamin JOURDAIN
Probabilités et statistique Benjamin JOURDAIN 11 septembre 2013 2 i ii À Anne Préface Ce livre est issu du polycopié du cours de probabilités et statistique de première année de l École des Ponts ParisTech
3. Caractéristiques et fonctions d une v.a.
3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Probabilités conditionnelles Loi binomiale
Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision
Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Espérance conditionnelle
Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle
Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.
Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir
Cours de Tests paramétriques
Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
UE Ma401. 1.1 probabilité conditionnelle, indépendance, dénombrement
UE Ma401 1 EXERCICES 1.1 probabilité conditionnelle, indépendance, dénombrement Exercice 1 La probabilité pour une population d être atteinte d une maladie A est p donné; dans cette même population, un
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication Philippe Robert INRIA Paris-Rocquencourt Le 2 juin 2010 Présentation Directeur de recherche à l INRIA Institut
ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N
ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement
Dunod, Paris, 2014 ISBN 978-2-10-059615-7
Illustration de couverture : Federo-istock.com Dunod, Paris, 2014 ISBN 978-2-10-059615-7 1.1 Symétrie du hasard et probabilité uniforme 3 1.2 Loi de probabilité sur un ensemble fini 6 1.3 Probabilité sur
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.
Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté
I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.
I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau
GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16
ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que
16 Chapitre 16. Autour des générateurs pseudoaléatoires
Chapitre 16 Chapitre 16. Autour des générateurs pseudoaléatoires Hasard et informatique peuvent paraître antinomiques. Car enfin, comment le circuit imprimé d un ordinateur ou d une calculatrice, parfaitement
Plan général du cours
BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE PROBABILITES Plan général du cours 1. Dénombrement et combinatoire (permutations, arrangements, combinaisons). 2. Les probabilités
Bases : Probabilités, Estimation et Tests.
Université René Descartes LMD Sciences de la Vie et de la Santé UFR Biomédicale, M1 de Santé Publique 45 rue des Saints-Père, 75 006 Paris Spécialité Biostatistique M1 COURS de BIOSTATISTIQUE I Bases :
Excel Avancé. Plan. Outils de résolution. Interactivité dans les feuilles. Outils de simulation. La valeur cible Le solveur
Excel Avancé Plan Outils de résolution La valeur cible Le solveur Interactivité dans les feuilles Fonctions de recherche (ex: RechercheV) Utilisation de la barre d outils «Formulaires» Outils de simulation
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
Introduction au Calcul des Probabilités
Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
MA6.06 : Mesure et Probabilités
Année universitaire 2002-2003 UNIVERSITÉ D ORLÉANS Olivier GARET MA6.06 : Mesure et Probabilités 2 Table des matières Table des matières i 1 Un peu de théorie de la mesure 1 1.1 Tribus...............................
Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1
Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Exercices de génétique classique partie II
Exercices de génétique classique partie II 1. L idiotie phénylpyruvique est une maladie héréditaire dont sont atteints plusieurs membres d une famille, dont voici l arbre généalogique : 3 4 5 6 7 8 9 10
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
